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e AbSLTACE ,a811 to axfally symmetric {low since the prescnce of
‘the radfal term In the equation of continulity des-
The governing differential equation for the troys the linear character of the hodograph cquations.

one-dimensional, tronsonic flow in a laval nozzle
in the vicinity of the throat was obtained in the For such problems of more general character i¢
non-dimcensional form. A lcast square {inite ele- i8 nccessary to work in the physical plane and solve
ment technique vas used with a lincarly interpol- the governing system of non-linear equations as
ating polynomial to reduce the governing equation they stand. Taylorlzused series expansion in the
to a system of non-linear algebraic equations neighborhood of the sonic throat, Oswatitsch and
vhich were solved numcrically by Newton's method. Rothstezn developed an iterative technique and
The systen of partial differential cquations for Emnonsl¥calculated the flow in a hyperbolic nozzle

the twvo dinensional flow in a laval nozzle was also by a relaxation method.
obtained fn the non-dimensional form. The method -

of iIntcgral relations was used to replace the A trecent publication ®n the use of the method
3 original system of partial differential equations of integral relations for tragsgaic flow in nozzles
3 . by a system of ordinary differential equations. has been published by Liddle! Chenl? , in his
: Using the least square finite element technique a finite element solution to the nozzle problem wvas
3 ! computer program was developed for the construction wunable to predicg ihe location of a shock in the
1 and solution of the non-linear equations for the flow. Liddle'sl?+16nethod to be valid requires !

lavnl nozzle problem. The results including the that there be no shocks {n the flow and though this
location of the shock in the flow are presented. method can give solutions %xtending into the super-
'/\ sonic region, the solutions are invalid if there are

- AA093458

'shock waves or local wall curvature discontinuities.

1. Introduction :
|

This paper scts out to solve the direct problem

-<
% 8 &
No other aspect of transonic flow has been of transonic flow in a laval nozzle and to determine i! |
" the subject of serfous study for nearly so long as the location of the weak shock using a least square E!
that of flows in ducts and nozzles., It is remark- finité. element technique. l: |
able that the essential features of steady acceler~ -t g J
. ating one dimensional flows at speeds up to and The governing equation derived in the following E; )
beyond the speed of sound had becen well described section can be solved exactly by analytical methods 0§ ﬂn‘.
. and understood by the end of the last century, be- and so it was selected as a model equation to & 2 B‘ﬂ
i fore the rapid development of modern fluid mechan- - illustrate the numerical method and also because =3
!4cs, and a realistic analysis on a one dimensional the accuracy of the numerical computation could be m 'i
,basis proved possible. In particular, because compared with the exact solution, the ultimate aia .@2
!viscous effects in continuously accelerating nozzle  being to use the numerical method developed in this :: et
{flows are small, the concept of boundary layer was paper for similar problenms with shocks. l, "
:not essential for progress. v . = =
o e
! The survey papers of Hall and Suttonland of . 11. Assumptions and Basic Equations g :'. :
 $1chel2outline progress with theories for nozzle For One-Dimensional Flow i; e
. “flow, the latter paper in the wider context of . “uE
viscous transonic flow. Other newer techniques are Congider one-dimensional, isentropic, steady, E E "v‘.
-due to Moretti®adapted by Hidgal3t4et al. and inviscid, transonic flow in a nozzle of varying
‘ Thompson®. Holtéand others have introduced to the cross-sectfonal area subject to no wall friction and
‘nozzle problem the method of integral relations heat exchange with the walls. The equations of
vhich had been successful in solving other trans- . continuity and momentum are
onfc flow problems. ' i ’ .
l d(pAv) = 0 (V)
The problem of transonic flow in nozzles is i d
. difficult because the governing equations are of - véu + .9 : 2)
b the mixed type, changing from elliptic in the low = e
4 specd repion near the nozzle entry to hyperbolic in  where, p is the density, A is the area of cross-
the supcrsonic region. In two dimensional irrota- section, U 1s the velocity and p is the pressure.

A tfonal flow, the problem can be solved by the hodo- For iscntropic flow the speed of sound, a, is re-
b -~ graph method, develo ed successively by l.ighthilﬂ. lated to the compressibility of the fluid by

F Frankl¥ and Cherry?» 1, 1In spitc of its high .
ool state of development, the hodograph method has oy 2 4
} -’ limitations. It can only be applied to the design : : gt - -‘2 o)
A problem in plane flow and cannot be uscd in the ; p
t dircct problem of calculating the flow field corres- |

¥, ponding to a given contour. 1t docs not apply at /
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Eq. (1) can be written as
‘ UAdp + pd(UA) = 0 (5)

Substituting for dp fren Eq. (5) in Eq. (4) and
using the rclation M = U/a vhere M s the wach num-
ber, gives on simpliciztion

awh w1 e, ®

éx ulq A dx

The energy e¢quatfon in c¢iffcrential form is
aa? + 22 % =0 m

where Y is the ratio of specific heats. Djfferen- -
tiating each sidc of the relation M2 = (—) and sub-
stituting for d(a?) from Eq. (7) gives o simpliffi-~
cation

2 2

2 a‘d(M7)

a7) = —— (8)
1 +3——;1 ¥

* Substituting for d(Uz) from Eq. (8) into Eq. (6) and

sinplifying yields

201 + 1—1 x2nd
2 A dx

2
d(nA)
dx 1-x
Assuning transonic flow, let

K-14+8 Q10)

vhere § << 1, Assuming a parabolic wall shape, let

A=1+ax? oy

vhere a is some constant dependirg on the nozzle
geometry. Differentiating Eqs. (10) and (11) with
respect to x and substituting in Eq. (9) gives

201 + 1-1 n2)n?

1
l-Hz 14ax

66
Pt 3 2 = 0 - (12)

Expanding (l4ax )-1 in a Taylor series for small x,
i.e. in the vicinity of the throat and subs:ituting
Eq. (10) in Eq. (12) and neglecting O(x ) and 0(62)
teras, Eq. (12) rcduces to

2
.‘!a(xé.)- 4(yH)ax( + %—1- =0 a3)

£q. (13) was scaled to give the one-dimensional.

equation of transonic flow in a laval nozzle in the
Tornulized form as

2 ' '
!';&'—)- -gQ-v) =0 as) |
nhc:'c 2y ‘"2 )
ve- 25 ol Qs)

g - 61\/-\-}; x (16)

Finally, since this paper vill Le prirarily concern-
cd with discontinuous solutions, it is necessary to
apply the junp condition

1 =0 an
vhich pust be satisfied by weak solutions of Lq.(14).

111, Statenent and Phveical Concer
Tof the lLaval .0/4); ’roblt:

The one dinmernsionral nozzle problenm involves the
solution of the non-linear ordinary diffcrential
equation, Eq. (14) with the boundary conditions at
the entry angd the exit being specified as

V(-a) = Vl. V(a) = Vn

vhere V, is greater than V; and the juzp condition
is as indicatcd by Eq. (17}

Figure 1. Laval nozzle.

Eq. (14) is a first order differential equation
vhich has to satisfy two boundary conditions and
thus it is difficult to obtain the correct solution
with shock using standard numerical methods. Sever-
al numerical techniques were investigated and the
least square finite element technique develcped gave
the desired results.

Solving Eq. (14) enalytically gives
5_ 4+ constant = in(———) -V (18)
For a sonic throat V = 0 at § = 0, thus

E ]
p |
%— - ln(l—_—v-) -V (19)‘

Eq. (15) indicates that for ¥ > 1, V is nega-
tive and for M < 1, V is positive. Using (19), the
two branches of the laval nozzle curve arc sketched
in figure 2. 1f the flow in the nozzle was {rom
left to right four solutions are possible, depending
on the value of the entry and exit Mach numbers.

Eq. (14) can have a subsonic solution in vhich

..the flowv accelerates from the inlet to the throat

and dececlerates downstreanm of the throat and exits
rt subsonic speed (3-2, figure 2). A continuously
S e o wd
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Figure 2. Two branches of the laval nozzle curves

accelerating flow solution can also be obtained in
wvhich the flow cnters with subsonic speed, attains

a Mach nunber of unity in the throat section and
exits from the nozzle at supersonic spced (3-4,
figure 2). A solution that would be obtained for a
supersonic diffuser in which the flow could enter
with a supersonic velocity, decelerate to reach the
sonic speed in the throat and exit again with sub-
sonic speed is the curve 1-2 shown in figure 2. If
V > V), the flow will enter with subsonic speed,
become sonic in the throat, attain supersonic speed
dowvnstream of the throat, have a jump in velocity
through a shock and exit with a subsonic velocity
from the nozzle. The two possible solutions of
interest in this paper are shown in figures 3 and 4.

[

.Figure 3. The subsonic solution

v
v VO V) Ve

Figure 4. The solution with shock

- — -

Specifying V,, thc exit condition, the value
'l the constant in Eq. (18) can be determined and
the shock locatfion in the model example can be
obtlined graphically., Using Eq. (19) AOB was plotted
as shown in figure 5. OC was then plotted as a
rror image of OB about the {-oxis. Using V,, the
onstant in Eq. (18) was determined and the curve

ENJ was plotted on the same figure. DEIJ inter- |

ocation of the discontinuity. The shock solution ,
] rcprelcntcd by Aocrsn with the jump condition L

(GF = LI" satdsfyfug Bq. (17). The complete wet of

ilnval nozzle curves are plotied in figure 6,

Graphical determination of the shock
solution.

Figure 5.

Laval nozzle curves for different end
conditions,

Figure 6,

IV. Numerical Procedures Investipated

Several techniques were investigated to obtainm
the solution with shock and the modified least
square method was found to give the desired results.
A detailed discussion of the other methods investi-
gated is beyond the scope of this paper, but a brief
mention is made with reference to them here.

"The fourier sine transform technique was used
to solve the governing cquation and it resulted in
‘a solution resembling the subsonic solution. The
one and two term least square method using fourter
serics and imposing the additional conditions that
v=0 (M=1) and dV/df < 0 at the throat resulted in
a solution which did resemble the shock solution
Put was not a good reproduction of the exact solu-
tion. The results are sketched in figure 7. To
obtain an acceptable result, a larger number of
terms in the fourfer series would have to be consi- !
dered and the effort required to obtain the final a
form of the non-linecar algebraic cquations would be-—-——-—-v
prohibitive. MNence the simpler lecast square (Snite-—-—-—-—-v
clement technique was preferrcd over the other
methods,
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. .\.‘i_/_;:,/ _ +and simllarly in the §ntcrval £, to £,
. \Q 3
Vi Vial: ViV
a= _"E "‘:['."' Y b bl -_:C (22)
14174 172441
aw?)
Let R = ‘d-f._ - L(1-v) (23)

1. Analytical Solution with Shock,

e

2. TYourier Sine Transform Mcthod.
¢ transio where, R is the residue. R = 0 if the solution of

. 3. 2-Term Lcast Square method, . the governing cquation is exact. Substituting for

4. 1-Term least Square Method V from Eq. (20) gives

g : " R = 2b(a+bE)-(1-a-bE)E (24)
Figure 7. Plot of V versus { for two other numer- ]
ical techniques investigated. : The total crror in the two elcments being considered
simultancously is given by

V. The least Square Finite FElement Technique Ei 2 €1+l 2
IC R°at + S R"d§ = Total error (25)
i-1

&

The model equation considered was

2 The system of non-linear equations to be solved
3 y q
""%‘2' -£(Q1-v) =0 (14) was obtained by minimizing the total error as
2 o, 2 B,
with the boundary conditions V(-a) = V. and V(a) = W J R4 5y J R°dE = 0 (26) -
. Vp. The range between § = ~a to § = a was divided . vi. Ei—l i gi
into a finite number of intervals and for illustra- v
\ tfon purposes figure 8 shows 4 elements under consi- So, for n unknowns in V, there are n non-linear
: deration. V, and Vg are the specified entry and equations to be solved. Thus for three unknowns the
: exit conditions respectively and V,,V3 and V4 vere system of equations is
) computed as follows. - '
: 2 522 2 532
: v rl(vz,vs) 3V fC R7dE + 3V IE R°dE = 0 (27)
: 2 "1 2 2
1 £ £
i - 1 1 |0 ¥ ) 3.2 ] 4.2
' - ) W Fy(VyuVa,V,) = my— JeTRTAE 4 50— JR7AE = 0 (28)
& L& & &€ 27273 T vy ey v, gy

3 3
o9 42 3 5p2.. _
Fa03%)) = 5v; Tg R4 + 5y [ Rat =0 (9)

. S d i .
Figure 8. The { axis divided into 4 intervals Rewton's method was used to solve the system !

of algebraic equations and the iterative technique
is illustrated below. The (k+1)th itrerate is given
in terms of the k-th jterate as

Taking two elements simultaneously (figure 9)
and assuming a linear variation of V, the system of
non-linear algebraic equations was obtained

{ : . ! -
' via o WD oy ® 157 ) 30)
- ( .
| ‘ ) B .
, - Viet vhere F, o
! ' . w, w, °
) H ! H V. F 2 3
' ' 3 2f » P1= 0w, W, W,
Figure 9. Development of the system of equations. vA '3 3!'3 BF)
b o R QU 4 -
Vea+b (20) | av) av‘d
3 vhere 8 ond b are functions of V and §, that is in | . {J) 1s a tridiagonal matrix. Let ; 3
b [the snterval £4.1 to &4 . . ‘ 3
_ wi® _ (vi® . (x) o]




Thon,

(1Hx) = -(F) ¢

e ——

: {X)} vas obraincd from Eq. (32) by Causciin
,eMeination and {v}{k+1) vas then obtained from
Fq. (31). The $nitial values of V chosen to sturt
the fterative process were arbitrary. The conver-
gence criterion was

/n Vik) :
€= JL 1 - —5=v (33)
1=1 Vi(k‘l)

6

for a system with a unknowns, where € € 10 .

The solution cbtained by the conviontional least
square finite elcment technique resulted in a solu-
tion reserbling the subsonic one shown in figure 3.
The error in cach element was computed by

£
e=/f 1 g2

r2ag (34)
LY

for each iteration and it was observed that when
starting the {terative process by using the analy-
tically obtained values of the unknowns, the value

of e was small in all elements except in the element
in which the shock was located, 1.e. e was very

large in that elexent (element IV, figure 10). Thus
the total error would be very large. The total error

Vi

\¢3
{y i
cl ‘2

Figure 10. Sketch of a discontinuous solution.

wvas minimized at cach iteration and finally the
result converged to a solution resembling the sub~
sonic solution. So a modified least square tech-
nique was developed in which the error in the shock
element was not considered., The method thus became
one of searching and subsequently fitting the shock
in the proper element.

VI. The Modified Least Square Finite Element
Jechnique

. The same example as in the previous section has
been considered to illustrate the method., 1In the
modified lcast square finite element technique the
shock is assumed to lie in a certain element and the
error in that clement was not considered in the solu-
tion of the set of equations, .
4 S0, vith reference to figure 8, the shock was
first assumed to be in element 11 and neglecting

[}

€32
’C,‘ d¢ ,
the system of equations, Eqs. (27),(28) and (29),

was solved by Newton's method. Similarly, assuming
the shock to be in element II1 and now neglecting

84 2
lC,l &% ,

Ste L of eqantions v

,;.~>fs wvas repeated for all the ot .

ch o set of results thus obtafned wo o 7 10 oirae
;-1 .te the locatfon of the sheck. 7L Y il
rtep was to check if the Jump conditi -+, 1. (17);
wis satisfied. For example, contjidairi:y the -hock

in clement 11F¥, the values obtained for Vz, VJ and
v‘ vere as shown in figure 11

port of th

—-~- exiropolate VSZ
curve

'Figure 11: Illustration of the shock fitting appro-

ach.

The curve V3Vg, and V‘Vsl arc the extrapolated
parts of the solution. 1If Vg, = - Vg, then it wvas
concluded that a shock would Occur in elewment 111,
otherwise a shock was not possible in that elvrent.
Solution of Eqs. (27), (28) and (29) by the convur-
tional least square method gave one possible result,
resembling the subsonic solution, the solution of
the same set of equations by the modified least
square method using the shock fitting approach gave
two possible sets of results with shock, of which
the solution with a reverse shock was considered as
being physically not acceptable. The two existing
possibilities of the flow are shown in figures 12a
and 12b, for the example considered.

Figure 12a. Subsonic solution.

Y2
! I m
& &

| Figure 12b. Shock solution.

I To decide on whether to aceept the subsonde
solutfon or the shock solution as the appropriate
result, the total crror was computed for both the
cases by

| S,




2 M2
Le IJ)0URTAE (35) V(i-0) 08 V(-1-0):0'55122
1=1 "1 v -
10
-~ tolution withouf a shock

vhich for the exazple considered becomes !
! -~ solulion with ajchock

. ' ' % .riigg.l-t(n;v:-o
|
|
i

£2 2 L
zno shock ~ r‘Ns © /£1R ¢
£ 3 =
. f€3x2 o + I;l'kz o S
2 3 \\\
) ) N
+1oR%0 o6 o6
4
€ 2 €3, i
E ok ” B‘ - ICIR ar + I‘:zn dag
£ g,
+/ :’.deE +J ’.deg
E3 Ey soluiion tofal error
€ without shock 0434 x10°2
+ I£4R 14 (37) wilh shock 0343 x 1072

Of the two possible results, the solution with the
least total error was selected, that is if Eyg < Eg,
then a subsonic solution was the correct result and

Figure 14. Plot of V versus § P

if Exs > Eg, then a shock solution was the correct T V(~0.0737)=0'051222
one. V{0:0737) = 0-0513
LI
- &li-v):=0
§ © 0 o0 C d .
' — =sofufion with o shock *
& =" = soiution without 0 shock
] v
g
- Shotk
© Solution . : 05
" , s
n m n
ELEMENT HNUMBER
. -0%
Figure 13. Plot of total error versus element num-
ber.
-.05
Vii. Results for the One-Dimensional Problem solufion toto! error
H g -8
The governing equatfon (14) was solved numer- . w;"';,ou::ho‘:k 0.56 x 'o_a——i
ically by the technique developed for the set of L thock 0.51 x 10
end conditions: .
V(—i.b) = 0,.55122 , V(1.0) = 0.6 (38) Figure 15. Plot of V versus §.
v(-0.0737) = 0.051222 , v(0.0737) = 0.0513 (39) -

Both the possibilities, the subsonic solution
and solution with shock, were investigated and the
iproper solution was selected basing the deduction
;on the total error in each case. Figures 14 and
15 are the plots of V versus £ for the different
boundary conditions. For the boundary condition in : R
Eq. (39), the values of the Mach number, M, versus ' 05 -025 0 .25 .05
X were plotted for a = 0.25, indfcated 4n figures
16 and 17.

1
!
i
|
t

Figure 16. Distribution of the Mach number along
. the oxis of a onc dimensional laval
nozrle, a = 0.1, .
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Figure 17. Distribution of the Mach nurber along
the axis of a one dirensional laval
nozzle, a = 0.25.

V111. A Note on the Results of the One Dimensional

Analysis

The results obtained in the previous section
show that the nuterical technique developed can
successfully be used for similar problems with shocks,
The analysis of nany flow problezs assunming the flow
to be one dizensional, is a useful approximation.

At first sight this is surprising, since the flow
model vhich forms the basis of the one dimensional
method, differs profoundly from the actual physical
situation. For example, the one dimensional method,

dgnores the existence of a non-uniform and possibly

changing velocity profile and it assumes happenings
e.g. friction, to be
felt instantaneously over the whole cross-section.
However, the one dimensional method was preferred

for its simplicity. The numerically obtained results
and the analytical results shown in figure 6, are in
excellent agreement. The following sections are
devoted to the derivation and solution of the two .
dimensional laval nozzle problen.

IX. Derivation of the Potentia2l Equation

The nozzle axis was selected as the x-axis and
the origin of the coordinate systezx was placed in
the center of the throat. With the hypothesis of
non vortical flow and pefect flow of a perfect gas
with constant speciffc heats Cp, Cy and v = Cp/C,
the potential equation for two d1rensional flow is

252 _ gL

B+ P > o)

In this 4, V are the x and y components of velo-
city and a, the local sonic velocity, is related to
the critical velocity a, through

|
{

(41)

o2 - X821 Ghih

: i
Substituting Eq. (41) in Eq. (40), limfiting the -
present investigation to the vicinity of the throat
#nd introducing the dimensionless velocity components

i=a,(t) andy = ay “2)’

n vhich v and v are small quantities, the potential
bquation; Eq. (40), becomes

-1 2 v . 2 2(y-1)
(2u + u + ¥;T ) - 3y lT*l Y u

& 3u
.___)___*+1 3

huveo0_~ (43

. As x40, y*0; u N ro and al-o on
the basis. of Eq. (42) .7 . =1 vooneguent]y the
quotient vly approach sy 3N the velodity rise
u/dx along the axds ¢. 't rot te vanish at the

orfgin, Then, if the o =1 quantities v and v are
considered lincar only, the following approxicate
relation is obtained from L. (43).
(y#1)u Qe ooy (44)
L ox 3y 7 &y
Since the noznle fleow is sy.ootrieal wi
respect to the x-awxis, tu/ly alse approas ¢re as
x-+0, }'0. Conscguertly the tern Iy fufzv nay to
ignored by means of which Lg. (44) tecomes
vyt 30h)
3y 2 3 0 (45)
Similarly the condition of irrotationality
becores
dv _ 3u
3 ~ Jy 0 (46)
At the walls, in the vicinity of the thrcat
for small u and v it can be shown that
y'=v 47)

vhere ( )' denotes differentiation with respect to

X. Application of the Method of Integral Relsticns
[3

The method of integral relations was originated
by Dorodnitsyn in 1958 and was subsequently sppiied
to several fluid dynarics problems. Several
scientists including Holt, Liddle and Archer have
applied the MIR to the nozzle problem. This cethed
provides a powerful tool for seclving problexs govern-
ed by nonlinear partial differential eguations with
the aid of cooputers and appears to be well suited
to the laval nozzle problem. It is applicable te
problens of elliptic or mixed elliptic-hyperbelic
type in two indeperdent variables. Certain cepen-
dent variables are represented as polynorials or
fourier series in one of the indeperdent variables
and the original system of partial differcntial
equations is replaced by a system of ordinary differ-
ential equations for the coefficients. These ordin-
ary differential equations are then solved using the
appropriate boundary conditions.

. For the one strip case the notations used are
shown in figure 18.

Figure -18.

- — -

One strip notations.
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vx,y to >,0 viere
ne=yh ¢

;Then, as n = 0 on the x-axis and n = 1 on the
channel wall Eqs, (45),:(46) and (47) becone

i
1

%a (1) 1("1 +y X (y+bn a‘“l =0 (49)
dv. _¥' 9v _ 13w _

XY "on ¥ =0 (50)

vy = Y (51)

Integrating Eqs. (49) and (50) with respect to
n between zero and a gencral value at a constant
x-station gives

’o 3 g; - 1 oY1) _)‘
+ ’o 1 " (y1yn 2 a(“ ) dn = 0(52)
f av dn - fzy n g;’; dn
' -I:%%%dn=o (53)

For the one strip case a lincar approximation
for u and v was assumed. For the two strip case a
quadratic interpolation could be done. Denoting the
values on the axis by suffix 0 and the values on the
channel wall by suffix 1,

7 u=u, ¢ n(ul—uo) (54)

v=vy + n(vl-vo) (55)

But v, = 0 by symmetry. Substituting Eq. (51) in
Eq. (35) gives
V= ny' (56)
Substituting for u and v and placing n = 1 in
Eqs. (52) and (53) gives

B &2 W
3 [u°(2u°+u1) + ui(u°+2u1)]

: LY Fadd :
! 3y ‘“*"“1’2“1]’v'°

s7)

: w=u +1 o @n? (58)

{ 1 o 2 i

v )

Assuming a2 parabolic channel wall f

Y=1+ax (59)'

vhere a is a constant depending on nozzle geometry,

(57) and (58) were solved for unknowns u_ and u,.

The two possibilities considercd while rgducing these
] equations further were ax? << 1 and when order x?

terms were not negligible. _-J
i
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The ene strip cquations (57) . for a
poratelic wall shuped nozzle redu. .
= —ux?
uy u° + a(l-ux?) (600)
v’y
9t £E(1-v) = 0 (61)
vhere, 2u_ + a(d-ax?)
Vo oo s e e — (62)
aQ-ox®) .2 __
3 a(y+l)
. 2
2 g’ 2ex #E | E
£ =F 1t | 39572 Fin | & l (€3)
3
P =48 () g /=g 64)
2/-q
G =60+ /g, c=—(y+1)a’ 65)
q = 4c[6 + a®(y+1)] ~ 36a? (66)

with the jump condition for weak solutions-given by

vl =0 67

As indicated by the above aralysis, it was
possible to reduce the one-strip equations to a
form similar to the one dimensional governing equa-
tion and this was subsequently solved by the least
square finite element technique.

Corresponding to the solution of Eq. (61) with
the boundary conditions (39) as shown in figure 15,
the curves for u, and v) are plotted for a = 0.1
and a = 0.25 in figures 19 and 20.

‘Figure 19. Distribution of u along the x-axis and
' the channel wall of a symmetric two

i dimensjonal laval nozzle with parabolic
arc wall, a = 0.1.
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Distribution of u along the x-axis and
the channel wall of a symrmetrie two
dirensional laval nozzle with parabolic
arc walls, a = 0.25.

Figure 20.

XII. The One Strip Case Assuming ax? << 1

Assuning ax? << 1, the one strip equations for
a parabolic wall shaped nozzle reduce to

u =y +a (68)
u?
4 - caw -0 (69)
vhere
w, *+ 3
Ve -« ———— (70)
A<+
(1)

with the jump condition for weak solutions given by
vl = o . a2

_The relation between M and M, is
. W2 (73)

-
&®

=

and it can be easily shown that

y = H*l -1 €74)

) i u =M, -1 5)

The least square technique was used to solve the
governing differential equation, Eq. (69).

Corresponding to the solution of Eq. (69) with
the same boundary conditions as in (39), the curves
‘for up ond uj are plotted for a = 0.1 and a = 0.25
4n figures 21 and 23 and the corresponding curves
for Mg and M) are plotted in figures 22 and 24.

An average value of the x-velocity was computed

pith l
- a -
Vaverage = Yo *+3 (76iJ

Figure 23,

Sl e avare e v ter gty and Ml
bLeen plotted dn the correspomting fipura:,

sults clearly show that the Junps in velcoelty oo
at the same value of x for the oac strip oo,

v
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Figure 21. Distribution of v along the x-axis and
the channel wall of & symmeiric tweo
dimensional laval nozzle with parzbolic-
arc walls, a = 0.1,
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Figure 22. Distribution of the ¥ach nuzber along )

the x-axis aznd the channel wall of a
‘symmetric two dinensional laval nozzle
with parabolic-arc walls, a = 0.1,

Distribution of u along the »-axis and
the channel wall of a symmetric two
dimensional laval nozzle with parabolic-
arc walls, a = 0.25.

. For @ = 0.1 and 0.25 the results indicated in
figures 21 and 23 show good agreement with the re- -
sults of figures 19 and 20 in the preceding scction.
Thus ft can be safcly concluded that ax? << 1 s a

good approximation and it is not necessary to go
through a2 nore complicated and tedious analysis of

ghe previous section to get good results. The aver-
age valucs of the velocity plotted in figures 21 and
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Eq. (79) was sclved by the least square technique
developed.,
Figure 24, Distribution of the Mach number along
the x-axis and the channel wall of a Corresponding to the solution of Eq. (79) with
symnetric two dimensional laval nozzle the boundary conditions V(-0.30660) = 0,23745,
with parabolic-arc walls, a = 0.25. Vv(0.3660) = 0,24250, the curves for u,, u; and
(179 and M, M, and M are plotted in
23 are interpreted as the average velocity of the [?;5§2§826 apd°27, where averdge ?
flow in the channel. Furthermore the shock occur- T
ing at some average value between the wall and the : 2 ‘
axis is a normal shock and the shock is located at u =u_+ E—y (82)
the point vhere there is a jump in the average average o 4b g
velocity, (up + @/2). Figure 25 illustrates the
fmportance of the average velocity
w04 4
o?
Mel — / x
~04 0 o T Toa
e / / 4 :
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Figure 25. The normal shock and the linear velocity > L Q{\\:T
distribution in a symmetric two dimen- 32
sional laval nozzle. o4 .
The first study of the continuously-accelera-
ting flow In a laval nozzle was made by Meyerls. Figure 26. Distribution of u along the x-axis and
The least square finite element method can also be the channel wall of a symmetric two
used to obtain the solution of such problems. The dimensional laval nozzle with hyperbo-
numerical and the analytical results are compared lic-arc walls.
in Appendix A, )
. " Ll
. 14
X11I. Application of the Least Square Finite Element i

Method to Emmons' Hyperbolic Channel Flow

The nethod of integral relations is pow applied
to a2 channel flow first calculated by Emmons™™. The
synmetric hyperbolic channel can be described by

2
5\/1 + :—, an N o4

; ro , ,_X
vhere, a = 0.5646425 and b = 0,8253356 . ~04 02 0 02 04

The one strip equations, Egs. (57) and (58), .Figure‘27
for the Emmons hyperbolic nozzle in the vicinity of : *
the throat reduce to 1

‘Distribution of the Mach number along
the x-axis and the channel wall of a
symmetric two dimensional laval nozzle

i 2 with hyperbolic-arc walls.
uw =u +2., : (78)
1 o 2b Ermons14had solved the problem of a two dimen- ~

sional flow of a frictionless, adiabatic, perfect
igas inside a hyperbolic nozzle. Fmmons' solution
. (7 was for curved shocks and since the velocity ficld

2
av) _ £EQ-V) = 0

dé -{after such shocks is not in peneral frrotational,
he had considered the rotation term in the flow
where, following the shock wave., The numerical solution

S e —
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s' upulre . oL . } Dtte least
rquare findte elos-nt o detivn Lo the e strip
Yease ghow an excellent e rovient, Froonrs' solution
!

is thoewn in figure 28
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Figure 28. Flow of a compressible fluid in a hyper-
bolic channel as obtained by Emmons,
H
4
Figure 29. Distribution of rotation; constant
rotation lines; w = rotation

W
(a,

uvD/a,, dirmensionless rotation,
stagnation acoustic velocity).

. The flow downstream of the shock wave was not
in agreement with Fmoons' solution due to the fol-
lowing reasons. Vhile Emcons considered the com-
plete differential equation of corpressible flow to
obtain his results, the least square pethod was used
to solve the approxirete differential equation vwhich
gives excellent results for transonic flows in the
vicinity of the throat of a laval nozzle. As al-
ready indicated before, only weak solutions were
investigated in this paper, while the results ob-
tained by Emrons was for strong shocks. Secondly,
vhile Eexmons had considered rotational flow down-
stream of the shock (figure 29), this paper assumed
the flow to be irrotational before and after the
_shock.,

-

XIV. Conclusions

A least square finite element technique was
developed to solve problems of transonic flow with
shocks. On an average it took less than {ive se-
conds of CPU time on the IBM 370/Systems 167 compu-
ter to obtain the result for a problem with nine
elements using this method. The solutions obtained
for the two illustirative examples show that this

cthod is a powerful and inexpensive tool to solve
sinflar problems with shocks. The equations have to

be reduced in such a mauner that the jump conditions
can be extracted from them and at times this involves
Juggling with algebraic quantities, although once
this is done the solution 1is quite simple, The H
method can be extended to the two strip case and _J {

con alro te applfed to the unston |

{loe prollcm,
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Appendix A

If the nondirensional velocity perturbations o

and v are defined by

u v
e TR (£2)
» 21
In terms of these conditions the irrotationality is
3u _ 3v
9y  ox (&)
which enables a potential ¢ to be defined by
=% %
u=ar, v 3y
The equation of continuity is
2 -1 .2 4
- - - - - — + A
G N e R LI S U L
2 2(y-1) y-1 .2 2, R
— - -5 -6¢)s = &
G T O TV S Y3y T 0 (B9
- 18, Lo s PN P e e e
Meyer  "in his investigation of the continceousliy-

accelerating flow in a laval nozzle assumcd that the
velocity distribution along the axis increared lin-
early, i.e.

u = Kx, ¢=%r¢:2 (86)
and by direct substitution in Eq. (B85) of 2 doutle
power series for §.

o n
¢ =g x", (67)

he obtained the coefficients é¢py up to and including

the sixth order terms (win < 6).

. 1.2 +1 2
- ¢ = 7 Kx + IE_ szyz + S%le— K3y4

+ gx+1)221-12 K3x2y2 + e (&8)
It was shown later that the exact solution of
the approximate differential Eq. (89)

2
-0t t

yy

is the first three terms of the one given in Eq.(88).

e
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of the velocity porturictions u and v, Thus the
cxart solutdfen for the two drensfonal transenie
flow problem for a continuously-accelerating flow
becomes i

2

u= ke + 112 (90)

2
v = (Y+1)K2xy + szll— K2y3 (91)

The equation of the line along which the flow is
parallel to the x-axjs is given by

X = - Iz_l_ Kyz (92)

It vas also shown that the length parameter
K-l is related to the radius of curvature R; of the
strcanlines in the throat region by

k=——1 (93)

YOHDR,

vhere Ry is the radius of curvature of the wall pro-
file at the throat rade nondisensional by dividing
by the nozzle half height or the radius at the
throat a2s the case may be.

With Ry = 5, the velocity distribution along
the x-axis and the channel walls of a symmetric two
dirensional nozzle with parabolic-arc walls has been
plotted in figure 30.

——— s NVEYIR'S SOLUTION
s LSFEM

— e ] . X
02 -ot 1] 02

Figure 30. Velocity distributjons along the x-axis
and the channel walls of a symmetric
two dimensional nozzle with parabolic-
arc walls, R1 = 5,

Equation (90) shows that u varies quadratically
in y vhile in the one strip case it was assumed
that u varics linearly in y. Thus Meyer's results
and the results obtained numerically by the least
square finite element method (LSFEM) do not show
perfect agrecment. In the two strip case where u
and v can be considered to vary quadratically in
y, while in the Meyer's solution and the LSFEM
solution are expected to be in close agreement with
each other.
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